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S
urface dipoles at metal�organic inter-
faces regulate the alignment between
the energy levels of active organic

materials and the electrode Fermi level,
playing a crucial role in the charge injection
properties and eventually in the efficiency
of (opto-)electronic devices.1,2 Particularly
relevant are the interfacial dipoles gener-
ated by charge transfer (CT) processes, since
they can occur for a very wide class of
π-conjugated molecular modules and are,
at the same time, the most difficult to pre-
dict and control. Derivatives of all-carbon
polycyclic aromatic hydrocarbons (PAHs)
are particularly suited to act as donor mo-
lecular modules since their gas phase ioni-
zation energies are comparable to the Fermi
levels of several metals.3�5 To achieve a
model system suitable to investigate the
influence of CT processes on the supramo-
lecular assembly at metal�organic inter-
faces, we designed a new pyrene deriva-
tive, tetra[1,3-di(tert-butyl)phenyl]pyrene (TBP)

(see Scheme 1a and Supporting Information),
and studied its interaction with single-
crystal metal substrates of different work
functions, namely Au(111) and Cu(111). The
coherence of our findings was demon-
strated by analyzing the assembly behavior
of two additional programmed tetra-legged
PAHs, 1,3,6,8-tetramesitylpyrene (TMP) and
2,5,8,11-tetrakis(3,5-ditert-butylphenyl)per-
ylene (TPPr) (Scheme 1) that, featuring a
different adsorption height with respect to
TBP, selectively enable or inhibit interfacial
charge transfer.

RESULTS AND DISCUSSION

Figure 1a shows the relaxed gas phase
structure of the TBP molecule as obtained
from density functional theory (DFT) calcu-
lations. The stable configuration has a three-
dimensional structure with an almost flat
central aromatic core and four conforma-
tionally free peripheral phenyl rings. Its cal-
culated ionization potential is 6.15 eV, with
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ABSTRACT The unique electronic properties and functional tunability of polycyclic aromatic

hydrocarbons have recently fostered high hopes for their use in flexible, green, portable, and cheap

technologies. Most applications require the deposition of thin molecular films onto conductive electrodes.

The growth of the first few molecular layers represents a crucial step in the device fabrication since it

determines the structure of the molecular film and the energy level alignment of the metal�organic

interface. Here, we explore the formation of this interface by analyzing the interplay between reversible

molecule�substrate charge transfer, yielding intermolecular repulsion, and van der Waals attractions in

driving the molecular assembly. Using a series of ad hoc designed molecules to balance the two effects, we combine scanning tunnelling microscopy with

atomistic simulations to study the self-assembly behavior. Our systematic analysis identifies a growth mode characterized by anomalous coarsening that

we anticipate to occur in a wide class of metal�organic interfaces and which should thus be considered as integral part of the self-assembly process when

depositing a molecule on a conducting surface.

KEYWORDS: charge transfer . metal�organic interfaces . interfacial dipoles . self-assembly at surfaces .
polycyclic aromatic hydrocarbons
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the HOMO mainly localized within the core but ex-
tending also into the 1,3-di(tert-butyl)phenyl rings
(Figure SI-4). TBPmolecules were deposited by thermal
sublimation in ultra high vacuum on Cu(111) and
Au(111) surfaces kept at room temperature, and
their self-assembly behavior was investigated by low
temperature scanning tunnelling microscopy (LT-STM).
On both substrates, single TBP molecules appear
as eight bright bulges, each corresponding to the
tert-butyl residues, with the four central ones being
higher than the others (Figure 1c). These observations
are consistent with the DFT-calculated adsorption
configuration which, for both Cu(111) and Au(111),
predicts that the pyrene core is significantly de-
formed in a pronounced saddle shape, while the
phenyl rings are rotated in the plane due to the
hindrance from the substrate (Figure 1b). This concave
adsorption geometry is associated with an intrinsic
electrostatic dipole of 0.90 and 1.53 D for TBP on

Cu(111) and Au(111), respectively (see Supporting
Information).
Similar to what was observed for a wide range of

different molecular species,6 the TBP molecules tend
to self-assemble into compact islands (Figure 2).
For both substrates, when scanning at a temperature
of 77 K, detachment of individual molecules from the
island borders are observed while isolated molecules
can be found only at defect sites, suggesting that
molecular diffusion is highly activated at room tem-
perature. The size of the TBP islands is, however, very
different on the two substrates. On Cu(111), extremely
large islands are observed, typically one per terrace
(Figure 2a). This may be viewed as the end point of an
Ostwald ripening process7,8 involving molecules that
interact through purely attractive van der Waals (vdW)
forces. As expected, the average island size grows
with the coverage (Figure 2c), and high temperature
annealing cycles do not alter the observed assembly,
indicating that the system has reached a thermody-
namically stable phase. A completely different assem-
bly is found on Au(111) (Figure 2b). In this case, at
low coverage (<0.5 MonoLayers, ML), deposition of
TBP results in the formation of several small islands,
with shapes and sizes that are not significantly deter-
mined by the corrugation lines of the herringbone
reconstruction but are evenly distributed over the fcc
and the hcp areas of the substrate (see Supporting
Information).
The high molecular mobility (and the smoother

adsorption energy profile expected on the less reactive
Au substrate) excludes that any kinetic limitation to
diffusion could be responsible for this assembly mode.
Moreover, in the case of a kinetics-limited ripening, the
average cluster size and density should increase, re-
spectively decrease, with annealing time and tempera-
ture.9,10 However, annealing experiments at different
times (up to 20 min) and temperatures (from 320 up to
420 K) produced no changes to the observed arrange-
ment of TBPmolecules on Au(111), suggesting that the
structures displayed in Figure 2b also correspond to
an equilibrium configuration. Thus, our observations
point toward a thermodynamic explanation of the
assembly observed on Au(111) different from the

Scheme 1. Schematic representation of the investigated
molecules (a) TBP, (b) TMP, and (c) TPPr.

Figure 1. (a) DFT relaxed structure of the TBP molecule in gas phase and (b) adsorbed on the Au(111) surface. (c) Constant
current STM image of a TBP molecule adsorbed at a herringbone reconstruction elbow of Au(111). The elbow site induces a
slight right�left asymmetry in the adsorption configuration.
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standardOstwald ripening observed on Cu(111) for the
same molecule.
For both substrates, DFT calculations show that the

molecular projected density of states (pDOS) is essen-
tially unchanged with respect to the gas-phase DOS
(Figure SI-6). This physisorption picture is also reflected
in rather large adsorption heights, 3.65 and 3.59 Å for
Au(111) and Cu(111), respectively (see Supporting
Information). Such an adsorption configuration is sig-
nificantly different from the case of other PAHs, where
electronic mixing between molecular orbitals and
metal electronic states has been observed.11,12 How-
ever, while on Cu(111) the Fermi level (EF) is located
between the TBP HOMO and LUMO peaks, on Au(111)
EF pins theHOMOwhich becomes partially unoccupied
(Figure SI-6). Although this is a safe indication that TBP
acts as an electron donor to Au(111) but not to Cu(111)
substrates, the fractional occupancy of the molecular
orbitals is likely to be an artifact of the approximated
standard functional used in DFT13,14 and of the en-
suing well-known self-interaction error problem (see
Supporting Information). In fact, the reduced spatial
overlap between molecular and surface wave func-
tions rather points toward an integer charge transfer
(ICT)11,15 mechanism.
To overcome the limitations of DFT, the occurrence

of ICT is better assessed by comparing the position of
the HOMO energy level relative to EF. For the adsorbed
TBP molecule, the HOMO level can be evaluated
by adding to its gas-phase value an “image charge
potential” correction that describes the HOMO level
upshift due to the electrostatic screening of the me-
tallic substrate16,17 (see Supporting Information). Mean-
while, the positive intrinsic dipole associated with the

concave TBP adsorption geometry (Figure 1b) opposes
CT, causing a slight HOMO level down-shift (see Sup-
porting Information). By taking both these effects into
consideration,18 the difference between the substrate
Fermi level and themodifiedHOMOof an adsorbed TBP
molecule turns out to be ΔEAu = �0.18 eV and ΔECu =
0.19 eV for the Au(111) and Cu(111) substrates, respec-
tively. This further supports the DFT prediction that a
single TBP molecule is likely to lose one electron upon
adsorption on Au(111). The resulting molecular cation
would be screened by the electrons in the metal,
leading to the formation of an upward pointing, ver-
tical electric dipole (charge transfer dipole). On the
other hand, in the case of Cu(111), the TBP molecules
should adsorb in their neutral state.
The different propensity of TBP charging on the two

metallic substrates was further investigated by scan-
ning tunnelling spectroscopy (STS) measurements of
the tunnelling potential barrier Φ19 (also called “local
work function”). Molecular-scale resolved maps of Φ
were obtained by measuring I(s) spectra (tunnelling
current versus tip�sample separation, see Supporting
Information) as a function of the lateral tip position19�21

and are displayed in Figure 3 as variations with respect
to the clean substrate (ΔΦ). Twomain features are clearly

Figure 3. Constant current STM images of TBP molecules
deposited on (a) Cu(111) and (b) Au(111). (c and d) Simulta-
neously acquired local work function maps, showing the
variationΔΦwith respect to the clean substrate. (e) The dis-
tribution of ΔΦ values measured on TBP molecules on
Au(111) and Cu(111) are shown in blue and red, respectively.

Figure 2. STM images showing the TBP assembly on Cu-
(111) andAu(111) surfaces at low (a andb) andhigh (c andd)
molecular coverage, respectively.
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evident: negative values of ΔΦ over the molecules
(Figure 3c,d), the effect being 0.2 eV stronger on
Au(111) than on Cu(111) (Figure 3e); a different ΔΦ
intramolecular contrast on the two substrates, with
significant variations (∼1 eV) between the 1,3-di(tert-
butyl)phenyl groups and the pyrene core for TBP on
Au(111) (Figure 3d) and a spatially muchmore uniform
ΔΦ distribution for TBP on Cu(111) (Figure 3c).
These observations are consistent with an improved

energetic stability of positively charged TBP molecules
on Au(111) with respect to Cu(111). The smaller Φ
values observed in correspondence to the molecular
islands on both substrates cannot be directly assigned
to charge transfer as they can also be caused by other
types of molecular dipoles, including the intrinsic
dipole and the so-called pillow effect, which all co-
operate to reduce the local work function.1,2,15,17 How-
ever, the extra ΔΦ drop of ∼0.2 eV observed on
Au(111) is consistent with an additional contribution
to the electrostatic potential caused by a fraction of the
deposited molecules being positively charged and
thus generating upward pointing ICT molecular di-
poles (see Supporting Information).
The stronger intramolecular ΔΦ contrast observed

on Au(111) further confirms the higher propensity of
TBP to get positively charged on this substrate when
compared to Cu(111). In fact, although the initial
charge state of a physisorbed molecule undergoing
reversible ICT will not be preserved when themolecule
is traversed by a current of several hundred pA, the Φ
map measured at negative sample bias represents the
extraction barrier profile experienced by an electron
leaving the molecule andmoving toward the tip19 and
should thus reflect the higher or lower stability of an
electron hole located on the molecule (see Supporting
Information). DFT calculations of the electrostatic po-
tential distribution generated by a neutral and a þe

charged TBP molecule are shown in Figure 4, panels a
and b, respectively (see also Supporting Information).
These exhibit an excellent qualitative agreement
when compared with the contrast measured in the

experimental ΔΦ distribution maps on Cu(111)
(Figure 3c) and Au(111) (Figure 3d), respectively.
A coherent picture emerges from our results: Ad-

sorbed TBP molecules remain neutral on Cu(111) and
are therefore expected to interact mainly through
attractive vdW forces, forming isolated large islands
by a standard Ostwald ripening process. On the other
hand, TBP molecules adsorbed on Au(111) can host an
electric dipole originated by ICT and surface polariza-
tion screening. As a consequence, the assembly on
Au(111) derives from the coexistence of short-range
vdW attraction and long-range repulsive forces be-
tween chargedmolecules. At low coverage, this results
in the formation of several small islands uniformly
distributed over the surface. At higher coverage, one
could expect that the presence of forces of opposite
sign acting on different length scales leads to the
emergence of peculiar structural motifs (such as
striped patterns) as reported in many physical pro-
cesses,22 including the formation of magnetic do-
mains, phase separation in block copolymers, pattern
development on animal skin and, in a few known cases,
2D supramolecular assembly.17,23�25 This is however
not the case of TBP on Au(111) where, at a coverage
higher than about 0.5 ML, the molecules undergo a
rather different organization, an anomalous coarsening,
unusually characterized by the coexistence of small
and large islands (Figure 2d). When compared to
standard Ostwald ripening, this coarsening is thus
anomalous in two ways: (1) the formation of several
separated small islands instead of a single, large one
and (2) the peculiar coverage dependence of the island
size distribution.
The formation of large islands upon increasing

deposition can only occur if the intermolecular repul-
sion decreases with coverage. We attribute this to the
self-limiting nature of interfacial ICT. According to the
well-established ICT picture, the positive dipoles pro-
duced by donor molecules generate an electric field
that rigidly down-shifts the molecular levels and the
vacuum level, with respect to the substrate Fermi
energy.1 As the coverage increases, this reduction of
surface work function progresses until no driving force
is left to promote further CT and, from this point on-
ward, additional deposited molecules adsorb in their
neutral state on the surface.1,2,15 Although extremely
simplified, this picture captures the inherent self-
limiting nature of interfacial ICT, by addressing the
average monolayer behavior. On a local scale, the
driving force ΔE for charging an individual molecule
depends on the local electric field and thus on the local
spatial distribution of already charged molecules. As a
consequence, ICT can be inhibited for a molecule close
to several already charged neighbors, and charged
molecules can reverse back to neutrality if a change
in the local molecular arrangement makes this energe-
tically favored. These two processes will occur at an

Figure 4. DFT calculated distribution of the electrostatic
potential energy shift with respect to the bare substrate for
a TBPmolecule adsorbedon (a) Cu(111) and (b) Au(111). The
values are significantly larger on themolecular core than on
the peripheral groups for Au(111) but are uniformly distrib-
uted for Cu(111).
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increasing frequencywith increasingmolecular coverage,
thereby causing the self-limitation of ICT. This inher-
ent interplay between charge transfer and molecular
assembly allows a rich repertoire of growth patterns
and underpins the normal and anomalous coarsening
of TBP on Cu(111) and Au(111), respectively.
To rationalize the observed assembly behavior, we

performed equilibrium Monte Carlo (MC) simulations
of a simple coarse-grainedmodelwhere TBPmolecules
were treated as structure-less particles hosted on a
discrete hexagonal lattice. The particles could either be
neutral, in which case they only had a small positive
dipole representing the intrinsic “conformational” di-
pole caused by the concave adsorption, or charged,
with a larger dipole corresponding to the ICTmolecular
ion. The charge status of each particle was allowed to
reversibly switch between these two states with a MC
acceptance rate depending on the total energy varia-
tion (see Supporting Information) associated with the
switch. Each charged particle contributed an energy
term corresponding to the difference between the TBP
HOMO level and the substrate EF, which, according to
our previous calculations, is positive for Cu(111) and
negative for Au(111). Negative short-range interaction
terms associatedwith nearest neighbors attraction and
positive∼1/r3 terms acting between each pair ofmole-
cules were also included in the model Hamiltonian to
represent the vdW interactions and the dipole�dipole
long-range repulsion, respectively.
The model predicts neutral adsorption for all TBP

molecules on Cu(111). For this system, low coverage
(0.2�0.3 ML) simulations yield a stable assembly into a
single large island (Figure 5a), consistent with what
we observe experimentally (Figure 2a). However, a
very different growth pattern develops on Au(111)
(Figure 5b), with molecules arranged in several small
islands, closely reflecting our low coverage observa-
tions (Figure 2b). Thus, taking into account the repul-
sive interactions, the formation of CT dipoles is both
necessary and sufficient to reproduce the assembly
behavior observed on Au(111) (Figure 2b). At higher
coverage (>0.4ML), themodel predicts the coexistence
of small and large clusters (Figure 5d) in very good
agreement with the experiments (Figure 2d). This
result is a direct consequence of incorporating rever-
sible, coverage dependent ICT into the model. Indeed,
by allowing each TBP molecule to access both the
charged and the neutral state, local crowding of
charged molecules can be allowed in small islands
and avoided inside large islands. In both these coex-
isting structures the density of charged molecule
reflects the optimal local balance betweenmaximizing
CT energy gain and minimizing the total electrostatic
repulsion. Conversely, if irreversible CT is imposed by
enforcing the charging of all particles, the model
predicts a very different high-coverage behavior, i.e.,
the formation of striped phases (cf. Figure SI-8a).22

We believe that our analysis of the inter-relation
between supramolecular assembly and reversible
charge transfer has a much wider applicability than
the TBP on Au(111) system. Indeed, several examples
can be found in the literature, where the assembly of
functional molecular units was reported to follow an
anomalous coarsening.26�28 However, to the best of
our knowledge, this phenomenon was not directly
addressed or properly explained so far. Our work can
help rationalize similar observations and identify the
precise conditions that the molecular units and the
substrate must meet in order for anomalous coarsen-
ing to occur. Namely, the selectedmonomers must get
ionized as a result of CT while the short-range vdW
attraction between monomers must be such that
assembly is significantly moderated, while not forbid-
den, by the energy cost associated with long-range
electrostatic repulsion. This requires a careful balance
of the monomer's properties such as lateral size,
intrinsic dipole, and adsorption height over the surface
(see Supporting Information). Anomalous coarsening
can happen at this point under the further key condi-
tion that reversible charging is possible. This is clearly
not the case of, e.g., irreversible deprotonation29 or
surface-induced aromatic stabilization through the
formation of molecule�substrate covalent bonds.30

At low coverage, the optimal arrangement will be
achieved by limiting the assembly to small islands. If a
higher coverage is forced by further deposition, some
much larger stable islands will be able to form, with
a fraction of the molecules reverting to a neutral

Figure 5. Monte Carlo simulation snapshots of the TBP self-
assembly on Cu and Au substrates, obtained allowing only
neutral molecules (left panels), or both charged and neutral
species (right panels). Neutral and charged molecules are
represented in yellow and pink colors; top and bottom
panels correspond to low and high coverage, respectively.
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state while remaining interdispersed with the charged
ones.
The occurrence of normal and anomalous coarsen-

ing in the assembly of TBP on Cu(111) and Au(111),
respectively, results from the inhibition or enabling of
ICT at the metal�organic interface obtained by chan-
ging the work function of the substrate (ΦCu(111) =
4.9 eV and ΦAu(111) = 5.3 eV). However, since to a first
approximation ICT is linked to the relative position of
the HOMO level with respect to the metallic Fermi
energy, another strategy to obtain the same effect is to
modify the HOMO by engineering appropriate molec-
ular modules. To investigate this way to control the
self-assembly, we synthesized two further molecules:
1,3,6,8-tetramesitylpyrene (TMP) and 2,5,8,11-tetrakis-
(3,5-ditert-butylphenyl)perylene (TPPr) (see Support-
ing Information). The peripheral mesityl groups of
TMP and the extended perylene core of TPPr were
selected as they should significantly affect the adsorp-
tion height of the two central polyaromatic cores,
making it respectively higher and lower than that of
TBP. As a consequence, the image charge potential
correction describing the HOMO level upshift on me-
tallic substrates is expected to be higher and lower for
TPPr and TMP, respectively, when compared to TBP.
This should influence the ICT process on the Au(111)
and Cu(111) substrates and thus have a noticeable
effect on the 2D self-assembly.
Figure 6 shows the experimentally observed assem-

blies obtained after room temperature deposition
of TMP, TBP and TPPr on Au(111) and Cu(111) (STM
images acquired at 77 K). As for TBP, the highmolecular

mobility observed for TMP and TPPr at 77 K and the fact
that island size distributions do not change after
thermal annealing cycles indicate that all the structures
in Figure 6 correspond to thermodynamically stable
phases. TMPmolecules aggregate in large and compact
islands on both metals and their assembly follows a
normal coarsening. This is an indication that, due to the
large adsorption height of TMP and the ensuing small
image charge potential correction to the HOMO, no
charge transfer is taking place on either substrate. On
the contrary, even if the island sizes and shapes formed
by TPPr on Au(111) are significantly influenced by
the herringbone reconstruction (see Supporting
Information), it is evident that TPPr displays anomalous
coarsening on both metals, showing that repulsive
intermolecular forces are present on both metal�
organic interfaces. We interpret this as the direct con-
sequence of the smaller adsorption height of TPPr
compared with that of TBP, induced by its flatter
structure (see Figure SI-5). This causes a larger image
charge correction for the HOMO and thus allows the CT
process also on Cu(111). Finally, as already described,
TBP shows an intermediate behavior between TMP and
TPPr, with an anomalous coarsening indicative of CT on
the higher work function Au(111) surface and a normal
coarsening typical of neutral molecules on the less
noble Cu(111).

CONCLUSIONS

In the present work, ad hoc synthesized tetra-legged
pyrene derivatives (TBP) were designed to weakly
interact with transition metal substrates and such that

Figure 6. STM images showing the assembly of TMP, TBP and TPPr molecules on Au(111) and Cu(111) surfaces.
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their effective ionization potential is smaller than the
substrate work function but very close to it. When
deposited on the Au(111) surface, these molecular
units follow a novel growth mode characterized by
anomalous coarsening. The specifically chosen char-
acteristics of this model metal�organic interface have
allowed us to identify the causes of the anomalous
coarsening as the interplay between intermolecular
repulsion, caused by reversible integer charge transfer,
and van der Waals attraction. On the basis of this
insight, further tetra-legged π-conjugated molecules

(TPPr and TMP) were prepared to specifically enable or
inhibit interfacial charge transfer. The coherence of our
findings was then demonstrated by verifying that their
assembly on metal substrates with different work
functions followed anomalous or normal coarsening,
respectively. We speculate that, even if possibly less
clearly discernible, the same mechanisms should be
operating in a wide range of metal�organic interfaces
based on functional PAHs, and should thus be con-
sidered when investigating their two-dimensional
assembly.

METHODS
Experimental Methods. The molecular structures were investi-

gated with a commercial LT-STM operated in ultrahigh vacuum
at a temperature of 77 K. Cu(111) and Au(111) single crystals
were cleaned by multiple cycles of Arþ sputtering (1 keV) and
annealing (up to 800 K). After several hours of degassing, TMP,
TBP, TPPr molecules were deposited by means of organic
molecular beam epitaxy (OMBE) at different coverages onto
the substrates held at 300 K. STM images were acquired at 77 K
using electrochemically etched tungsten tips. Typical values for
bias voltage and tunnelling current were �2 V (occupied state
imaging) and 20 pA, respectively. The spatial variations of the
local work functionweremeasured at 5 K by adding a sinusoidal
modulation voltage to the z-piezo of the STM via an external
lock-in amplifier and recording the output of the lock-in tuned
on the first harmonic. Measurements were done in closed
feedback loop conditions during constant current scanning
with typical modulation frequencies of 3�5 kHz (always higher
than the cutoff frequency of the feedback loop) and peak-
to-peak amplitudes of 0.2�0.6 Å. For further details see the
Supporting Information. All the STM images were processed by
using the WSxM software.31

Computational Methods. Density functional theory (DFT) calcu-
lations were performed with the plane-wave-pseudo potential
package Quantum-ESPRESSO,32 using ultrasoft pseudopo-
tentials33 and a PBE-GGA exchange-correlation (xc) functional13

modified by the self-consistent DF-vdW functional,34 to account
for vdW interactions. Gas-phase and on the substrate relaxa-
tions were performed with a wave function energy cutoff of
408 and 204 eV, respectively. Charge transfer self-consistent
calculations on the substrate were recomputed using 408 eV.
Brillouin-zone sampling included the k = Γ point only. The
Makov�Payne correction35 was added to charged molecule
total energies, while a counter dipole term36,37 was included
in surface calculations. Au(111) and Cu(111) surfaces were
modeled with a slab containing two layers, allowing a vacuum
(ad-layer surface distance) of ∼10 Å. Forces were relaxed up to
0.26 eV/Å. Only forces acting on the top layer and the ad-layer
atoms were relaxed.

Synthetic Methods. 1,3,6,8-Tetrakis(3,5-di-tert-butylphenyl)-
pyrene (TBP). 2-(3,5-Di-tert-butylphenyl)-4,4,5,5-tetramethyl-
[1,3,2]dioxaborolane38 (1g, 3.16mmol), 1,3,6,8-tetrabromopyrene39

(200 mg, 0.39 mmol), and Pd(PPh3)4 (22.4 mg, 0.02 mmol) were
added to a 25 mL microwave vial. Cs2CO3 (1.1 g, 3.1 mmol) was
dissolved in 2.5 mL of EtOH and 2.5 mL of DMF. The resulting
mixturewas transferred to the vial, and 5mL of toluenewas added.
H2O (2 drops) was finally added, and the resulting mixture was put
under microwave for 4 h at 80 �C. The resulting mixture was
dissolved in Et2O (10 mL). The organic layer was then washed with
water (2� 20mL). The aqueous phase was washed with Et2O (2�
20mL). Theorganic layerswere collected, driedoverMgSO4, filtered
and evaporated to dryness. The crude was purified by column
chromatography using pentane as eluent. TBP was obtained as a
white solid (244 mg, 67%). Mp: 123�125 �C. IR (cm�1): ν 2962.97,
1593.92, 1476.12, 1362.25, 1247.39, 1021.30, 876.97, 817.89, 717.02.
UV�vis (C6H12, rt): λmax (nm) = 388; εmax (mol�1 L cm�1) = 11665.2,

λmax (nm) = 299; εmax (mol�1 L cm�1) = 16065.8. 1H NMR (400MHz,
C6D6): δ 8.58 (s, 4H, ArH), 8.47 (s, 2H, ArH), 7.76 (d, J = 1.48 Hz, 8H,
ArH), 7.65 (t, J = 1.48 Hz, 4H, ArH), 1.30 (s, 72H, CCH3);

13C NMR
(400 MHz, CDCl3): δ 150.81, 140.44, 138.14, 129.56, 128.18, 126.37,
125.40, 121.25, 35.20, 31.75. MALDI-HRMS: calcd 954.7043, m/z:
954.7053 ([M]þ, C72H90

þ).
1,3,6,8-Tetrakis(2,4,6-trimethylphenyl)pyrene (TMP). To a

5 mL microwave vial was added mesitylboronic acid40 (500 mg,
3.04 mmol), 1,3,6,8-tetrabromopyrene (100 mg, 0.19 mmol),
Pd2(dba)3 (2.4 mg, 0.002 mmol), S-Phos (2.05 mg, 0.004 mmol)
and K3PO4 (580 mg, 2.73 mmol). Dry toluene (5 mL) was then
added, and the mixture was stirred at the microwave for 16 h at
100 �C. The resulting mixture was dissolved in CH2Cl2. The
organic layer was then extracted with H2O (2 � 20 mL), and
the resulting aqueous phase was then extracted with CH2Cl2
(2 � 20 mL). The combined organic layers were dried over
MgSO4 and evaporated in vacuo. The residue was purified
by precipitation�recrystallization in EtOAc to afford TMP
as a white solid (105 mg, 68%). C52H50, MW: 674.95 g/mol. Mp
> 250 �C. IR (cm�1): ν 568.19, 616.29, 731.7, 819.7, 837.56, 850.21,
906.3, 1005.57, 1376.73, 1437.14, 1458.62, 1475.93, 1610.9,
2916.39, 2967.54. UV�vis (CH2Cl2, rt): λmax (εmax,mol�1 L cm�1)
253 (85182), 288 (75571), 346 (51278), 363 (64098). δH(400
MHz, CDCl3) 7.60 (s, 2H, ArH), 7.52 (s, 4H, ArH), 7.01 (s, 8H, ArH),
2.39 (s, 12H, CH3), 1.95 (s, 24H, CH3). δC (400 MHz, CDCl3)
137.30, 136.91, 136.35, 129.16, 128.57, 128.20, 126.01, 124.92,
21.30, 20.87 (one peak is missing probably due to over-
lap). MALDI-HRMS: calcd 697.3805, m/z: 697.3808 ([M þ Na]þ

C52H50 þ Naþ).
2,5,8,11-Tetrakis(3,5-di-tert-butylphenyl)perylene (TPPr). To

a 5 mL microwave vial was added 1-bromo-3,5-di-tert-butyl-
phenyl (285 mg, 1.05 mmol), 2,5,8,11-tetrakis(4,4,5,5-tetra-
methyl-1,3,2-dioxaborolan-2-yl)perylene41 (100 mg, 0.13 mmol)
and Pd(PPh3)4 (8 mg, 0.007 mmol). Cs2CO3 (345 g, 1.05 mmol)
was dissolved in a mixture of EtOH/DMF 1:1 mL. The resulting
mixture was transferred to the vial, and 2 mL of toluene was
added. H2O (2 drops) were finally added, and the resulting
mixture was placed under microwave for 2 h at 80 �C. The
resulting mixture was dissolved in Et2O. The organic layer was
then washed with H2O (2 � 20 mL), and the resulting aqueous
phase was extracted with Et2O (2 � 20 mL). The combined
organic layers were dried over MgSO4 and evaporated in vacuo.
The crude was then purified by column chromatography using
cyclohexane as eluent with a gradient of (cyclohexane/CH2Cl2,
9:1) affording desired TPPr as a pale yellow solid (17 mg, 13%).
C76H92, MW: 1005.54 g/mol. Mp > 250 �C. IR (cm�1): ν 712.34,
739.17, 800.20, 867.29, 1019.72, 1088.86, 1248.43, 1260.50,
1362.09, 1393.01, 1476.49, 1594.85, 2866.66, 2903.52, 2960.86.
UV�vis (CH2Cl2, rt): λmax (εmax, mol�1 L cm�1) 402 (8567), 426
(18494), 454 (26112).δH (400MHz, CDCl3) 8.57 (s, 4H, ArH), 8.01 (s,
4H, ArH), 7.69 (d, J = 1.83Hz, 8H, ArH), 7.53 (t, J = 1.83 Hz, 4H, ArH),
1.46 (s, 72H, ArH). δC (400 MHz, CDCl3) 151.57, 140.81, 140.58,
135.72, 131.58, 127.34, 126.37, 121.94, 120.54, 35.25, 31.77 (one
peak is missing probably due to overlap). MALDI-HRMS: calc.
1004.7194,m/z: 1004.6963 ([M]þ C76H92

þ).
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